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Basic Concepts and Procedures in Single- and
Multiple-Group Latent Class Analysis

Allan L. McCutcheon

Latent class analysis is frequently used when the researcher has a set
of categorically scored observed measures that are highly interrelated.
The latent class model (LCM) – which is often characterized as the cate-
gorical data analog to factor analysis – is most appropriately used when
the observed indicator variables are associated because of some underly-
ing unobserved factor rather than being causally related.1 For example,
the correctness (incorrectness) of answers to questions on an exam may
be highly interrelated as a result of mastery; those who have mastered the
material will tend to answer items correctly, and those who have yet to
master the material will tend to answer them incorrectly. Thus, in a suf-
ficiently large sampling of student exams, we would anticipate that those
who correctly answered question 1 would also be more likely to have cor-
rectly answered questions 2, 3, and so forth, yielding a clear association
among the “variables” (exam questions). Frequent instances of this kind
of association can be found in the social and behavioral sciences (e.g.,
self-esteem, religiosity, partisan identification, consumer loyalty).

Since the early 1990s, the LCM has emerged as a powerful new method
for the analysis of categorically scored data. As is clear from the range
of applications in this volume, the range of topics to which the LCM
can be fruitfully applied is quite broad. A major reason for the utility
of the LCM is that we can use two quite different, although highly in-
terrelated and completely equivalent, parameterizations for this model:
probabilistic and loglinear. In this chapter, these two parameterizations
will be considered. In addition to exploring the differences between them,
we will examine the isomorphisms of the two parameterizations and show
how the selection of one may focus the analyst’s attention on certain as-
pects of the model, whereas selection of the other may focus attention on
a somewhat different aspect of the model.
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Although the alternative parameterizations of the LCM are clearly a
strength of the LCM and make the model highly flexible and useful across
a wide range of research applications, they also present a set of special
challenges. In particular, restrictions that can be readily imposed on one
LCM parameterization may be difficult, or even impossible, to replicate in
the other parameterization. Thus, although the basic, unrestricted latent
class model is identical across the two parameterizations and yields iden-
tical “fits” to observed data, restricted models with one parameterization
may not be readily translated into the alternative parameterization. Con-
sequently, the researcher may need to consider both parameterizations in
order to determine which of the two – the probabilistic or the loglinear –
is most appropriate to the research problem.

In this chapter, we first examine the basic unrestricted latent class
model in its probabilistic and loglinear parameterizations. This section
focuses on model equivalence and interpretation across the two parame-
terizations. In the second section, model estimation issues are discussed.
There are two main approaches to maximum-likelihood estimation
(MLE) for LCMs: the expectation–maximization (EM) algorithm and the
Newton–Raphson (NR) algorithm. These two iterative algorithms will be
briefly introduced, along with some associated issues such as identification
and problematic solutions. In the third section, model evaluation criteria
are considered. These criteria are critical for guiding our decisions about
the appropriateness of accepting a specific model as adequately character-
izing the associations observed in the data. In the fourth section, we focus
on the model restrictions for each of the parameterizations. Model restric-
tions are critical for establishing the equivalence of latent class structures
when we wish to examine an identical set of categorically scored measures
in two or more samples. We will discuss cases in which restrictions that
are complicated under one parameterization are readily managed under
the other. In the final section, we briefly examine the simultaneous latent
class models (SLCMs) in which LCMs are compared in two or more popu-
lations. These SLCMs have proven highly useful in comparative research,
as well as in the examination of cross-time trends.

1. PARAMETERIZATIONS OF THE BASIC
LATENT CLASS MODEL

In this section, we examine the two parameterizations of the basic LCM
and demonstrate the equivalence of these two parameterizations. We ex-
amine each of the parameterizations in some detail, showing how the
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common properties of the two parameterizations (e.g., local indepen-
dence) are manifest in each.

A. Probabilistic Parameterization

Perhaps the most widely used and most intuitively grasped parameteri-
zation of the latent class model is the probabilistic parameterization. As
Goodman (this volume) has discussed in detail, the probabilistic param-
eterization of the basic unrestricted LCM is characterized by two types
of categorical variables – observed (manifest) indicator variables and un-
observed (latent) variables – and two types of parameters: latent class
and conditional probabilities. The LCM postulates that the relationship
between any two manifest variables is accounted for by the latent vari-
able; this is typically referred to as the axiom of local independence. Thus,
for an LCM with a single latent variable (X ) and four manifest variables
(A, B, C, and D), we can formally express the basic LCM as the product
of the latent class probabilities and conditional probabilities:
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where the latent class probability (π X
t ) is the probability2 that a randomly

selected observation in the sample is located in latent class t , and the con-
ditional probabilities (e.g., π A|X

it ) are the probabilities that a member of la-
tent class t will be at a specified level of an observed indicator variable. For
example, if our latent variable (Xt ) is a measure of religiosity (t = 1, reli-
gious; t = 2, not religious), the first indicator variable (Ai ) might be a self-
report of church attendance in the previous week (i = 1, yes; i = 2, no).
Thus, the conditional probability π

A|X
11 is the probability that a randomly

selected religious (i.e., latent class 1) respondent would report having
attended church in the previous week.

Within the LCM, hypotheses are tested by imposing restrictions and
determining how these restrictions affect the fit of the model to the data.
Goodman (1974a, 1974b) has shown that the LCM can be made identi-
fiable by imposing a set of logical constraints (restrictions) on the basic
LCM. Thus, for the basic LCM with a single latent variable (Xt ) and
four observed indicator variables (Ai , Bj , Ck, and Dl), we can express the
restrictions as
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The restriction that
∑

t π X
t = 1.0 requires that the latent classes sum to
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1.0 – that there is a latent class for each of the possible response patterns
observed in the data. The remaining restrictions require that each of the
indicator variables sum to one within each of the T classes.

Consider, for example, the data collected by Stouffer and Toby (1951)
in their study of role conflict. As noted elsewhere in this volume (see
Goodman), in February 1950 these researchers asked a group of Harvard
and Radcliffe students about a set of situations “involving conflict be-
tween obligations to a friend and more general social obligations” (1951,
p. 396). Students were presented with four scenarios in which either they
or their friend confronted each of four role conflicts. For students re-
sponding to the friend’s role conflict, each scenario was of the following
type (item A):

Your close friend is riding in a car that you are driving, and you hit a pedestrian.
He knows that you were going at least 35 miles an hour in a 20-mile-an-hour
zone. There are no other witnesses. Your lawyer says that if your friend testifies
under oath that the speed was only 20 miles an hour, it may save you from serious
consequences. What right do you have to expect him to protect you?

The other scenarios involve similar role conflicts for the respondent’s close
friend who is a drama critic (item B), an insurance doctor (item C), and
a member of a board of directors (item D). An equal number of students
were given scenarios with the same four situations, but modified so that the
students themselves were in the role conflict position. The distributions of
the responses for the four scenarios in these two situations are reported
in Table 1.

Table 1. Responses to Four Role Conflict Scenarios for Ego and Ego’s
Close Friend

Dilemma

Items Ego Faces Ego’s Friend Faces

A B C Item D (+) Item D (−) Item D (+) Item D (−)

+ + + 20 2 20 3
+ + − 6 1 4 3
+ − + 9 2 23 3
+ − − 4 1 4 2
− + + 38 7 25 6
− + − 25 6 15 6
− − + 24 6 29 5
− − − 23 42 31 37

Source: Stouffer and Toby (1951).
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As the data in Table 1 indicate, there are 16 (24) response patterns for
each of the two dilemma situations (Ego and Ego’s Friend). In general,
if there are k dichotomous items, there are 2k possible response patterns.
Each of the 16 response patterns was selected by one or more of the
student respondents for each of the dilemma situations. In this section,
we focus only on the responses to the situation confronting Ego. We
consider both situations later, when we take up the issue of multisample
latent class analysis.

One rather obvious question that emerges from Table 1 is whether we
must consider the 16 response patterns for each scenario as representing
16 distinct types, or whether some lesser number of patterns might account
for the observed distribution of responses. If we allow for measurement
error in each of the four indicator variables, we might view some of the
responses as the result of misclassification caused by the measurement
error, rather than true response types.

Setting aside, for a moment, the issue of how we determine if a par-
ticular latent class model is an adequate representation of the observed
data, we can present the two-class LCM for the data in the 16 cells of
the leftmost two columns in Table 1. The conditional probabilities (e.g.,
π

A|X
it ) for respondents saying that their friend had a right to expect them

to violate their role responsibilities (i.e., the positive or particularistic
response), along with the latent class probabilities (π X

t ), for the proba-
bilistic parameterization of the unrestricted basic LCM are reported in
Table 2.

As the data in Table 2 indicate, approximately three-quarters (0.7206)
of the sample are Class 1–type respondents and, by the restriction that
∑

t π X
t = 1.0 specified in Equation (2), about one-quarter (1.0 − 0.7206 =

0.2794) of the sample are Class 2–type respondents. We can use the con-
ditional probabilities to characterize the two latent classes in much the
same way that factor loadings are used to characterize the factors in factor

Table 2. Latent Class and Conditional Probabilities
for Ego’s Dilemma

Indicator Class 1 Class 2

A. Passenger Friend 0.286 0.007
B. Drama Critic Friend 0.646 0.074
C. Insurance Doctor Friend 0.670 0.060
D. Board of Directors Friend 0.868 0.231

Latent Class Probabilities 0.7206 0.2794
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analysis.3 Thus, we can see that Class 1–type respondents appear to have a
consistently higher probability of giving the particularistic response – that
is, of saying their friend had a right to ask them to violate their role obli-
gation – than do Class 2–type respondents. Thus, we may wish to regard
Class 1 respondents as the “particularistic” respondents and the Class 1
as the “universalistic” respondents (Stouffer and Toby, 1951, pp. 395–396;
Parsons, 1949, Chapter 8).4

Before we turn to the loglinear representation of the LCM, it is
worth noting that the restrictions on the conditional probabilities of the
LCM expressed in Equation (2) mean that it is not necessary to report
both the probability that the respondent would choose “my friend has
a right” and the probability that he or she would choose the response
“my friend does not have a right,” because these two probabilities must
sum to 1.0. Thus, for the dichotomous response options reported here
(i.e., I = J = K = L = 2), we need report only the probability of a sin-
gle response (e.g., the particularistic response), because the probabil-
ity of giving the universalistic response is equal to the difference be-
tween 1.0 and the probability of giving the particularistic response (e.g.,
π

A|X
21 = 1.0 − 0.286 = 0.714).

B. Loglinear Parameterization

It is also possible to represent the LCM as a loglinear model (Goodman,
1974a; Haberman, 1979, especially Chapter 10). The loglinear parame-
terization of the unrestricted basic LCM, however, differs from the usual
loglinear model in two important ways. First, the loglinear model for
the LCM includes an unobserved, latent variable (Xt ). Second, only the
two-variable parameters between the latent variable and each indicator
variable are included – all higher-order terms involving combinations
among the indicator variables of the loglinear LCM are set to zero. Thus,
the loglinear LCM also exhibits local independence among the indicator
variables. This basic model is expressed as

ln
(

f ABCDX
i jklt

)

= λ + λX
t + λA

i + λB
j + λC

k + λD
l

+ λAX
it + λBX

jt + λCX
kt + λDX

lt . (3)

As Equation (3) indicates, the loglinear LCM includes only the single-
variable lambda parameters along with the two-variable association pa-
rameters between each of the indicator variables and the latent variable.
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Table 3. Loglinear Parameters for Ego’s Dilemma Latent Class Model

Parameter

Indicator Single Variable Two Variable

A. Passenger Friend −1.472 1.016
B. Drama Critic Friend −0.483 0.784
C. Insurance Doctor Friend −0.509 0.864
D. Board of Directors Friend 0.169 0.771
X. Latent Class Variable 0.474 —

As with the probabilistic parameterization (and with ordinary loglinear
models), it is necessary to impose a set of identifying restrictions.
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These restrictions to the loglinear model require that the product of odds
and odds ratios are 1 (i.e., that the natural logarithm is 0). This, for ex-
ample, means that if you have twice the likelihood of being at level 1
relative to level 2, you have the reciprocal likelihood (0.5) of being at
level 2 relative to level 1.

The estimates of the loglinear parameters for the Stouffer and Toby
study are reported in Table 3. Typically, of greatest interest are the two-
variable association parameters that relate each of the indicator variables
to the latent variable. Although not necessarily intuitive, the lambda pa-
rameters range from negative to positive infinity, with zero indicat-
ing complete independence. Thus, the positive values for each of the
four two-variable parameters indicate that the student respondents’ par-
ticularistic responses are positively associated with their location as
Class 1–type respondents.

An alternative and somewhat more intuitive approach to interpreting
the two-variable loglinear LCM parameters is to convert them to odds
ratios. For example, we might note that the estimate of 1.016 for latent
variable item A (passenger friend) corresponds to an estimated log cross-
product ratio of

τ AX = 4λAX = 4.064
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with an estimated cross-product ratio of

e4.064 = 58.21.

Thus, we would conclude from the estimates reported in Table 3 that the
odds that a respondent with a Class 1–type of latent attitude will give a
particularistic response to the passenger friend indicator are 58 times as
great as the odds if he or she is a Class 2–type of respondent. The other
two-variable lambda coefficients may be similarly interpreted.

Finally, it is important to note that the unrestricted, basic LCMs ex-
pressed in Equations (1) and (3) are essentially equivalent, requiring
the estimation of an identical number of parameters and yielding identi-
cal expected values. This equivalence can be illustrated, in part, through
the equivalence between the conditional probabilities of the probabilis-
tic parameterization and the loglinear parameters (Haberman, 1979,
p. 551):

π
A|X
it = exp

(

λA
i + λAX

it

)/

∑

i

exp
(

λA
i + λAX

it

)

. (5)

We can use the lambda coefficients reported in Table 3 to calculate the
conditional probabilities reported in Table 2. For example, we can cal-
culate the probability that a particularistic (latent Class 1)-type of re-
spondent would give the particularistic response to the passenger friend
indicator as

π
A|X
11 = exp(−1.472 + 1.016)

exp(−1.472 + 1.016) + exp(1.472 − 1.016)

= 0.633560
0.633560 + 1.578382

= 0.286427.

Each of the other conditional probabilities in Table 2 can be derived in
an analogous manner from the loglinear lambda coefficients presented in
Table 3.

The probabilistic and loglinear parameterizations each permit the re-
searcher to test a number of interesting hypotheses the researcher might
wish to test by imposing restrictions on the model parameters. However,
the two parameterizations lend themselves to somewhat different hy-
potheses. Before we consider restricted models, a brief discussion of
model evaluation will be useful.
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2. MODEL ESTIMATION

There are two main alternatives to estimating the parameters of the
LCM – the expectation–maximization and the Newton–Raphson algo-
rithms – both of which are iterative, maximum-likelihood estimation ap-
proaches. As iterative approaches, both algorithms begin with a set of
“start values” and proceed with a series of steps of parameter estimation
and reestimation iterations until some designated criterion is reached.
Usually, the “stop” criteria focuses on convergence – each additional it-
eration in the parameter reestimation procedure finally approaches some
predesignated “small” change, and the procedure stops. As a number of
excellent expositions of the EM and NR algorithms and their variants
now exist (see, e.g., Everitt, 1987; McLachlan and Krishnan, 1997; see also
Vermunt, 1997a, and Wedel and Kamakura, 1998), only a brief discussion
of these approaches is considered here.

The EM algorithm has become one of the most widely used approaches
to LCM estimation. Certainly among the contributing factors to the pop-
ularity of the EM algorithm are its robustness with respect to the initial
(start) values – these can be quite distant from the final estimates and will
still reach at least a local maximum – and its relative ease to program. Two
of the more frequently mentioned disadvantages of the EM algorithm are
that this approach may require a large number of iterations to reach a final
solution and that the EM algorithm does not directly provide estimates
of the standard errors. The rapid increase in computational speed has
reduced the first of these problems.

The EM algorithm consists of two steps. In the first step – the expecta-
tion, or E, step – the expected value of the log of the likelihood function
is computed, conditional on the observed data and the initial parame-
ter estimates. In the second step – the maximization, or M, step – the
function is maximized in order to give updated values of the parameter
estimates. These new estimates of the parameters replace the initial esti-
mates and the algorithm returns to the E step. The algorithm continues in
this iterative manner until the changes in either the parameter estimates
or the changes in the likelihood function (or its logarithm) reach some
predefined level of precision, at which point the iterative process halts.5

The NR method also uses an iterative approach to produce maximize
likelihood estimates of the LCM parameters. The NR method has the
advantage of being relatively fast and producing the standard errors of
the parameter estimates as a by-product of parameter estimation. Among
the disadvantages of this method are the need to invert the Hessian matrix
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at every iteration and the requirement that the initial estimates must be
close to the final estimates or the matrix may become negative definite
and thus cannot be inverted. Consequently, when the start values used
with this method are too far from the final solution, the NR algorithm
may not converge on a set of final estimates.

The NR method begins with a set of initial parameter values (θ) and
improves on these values by modifying them by the product of the inverse
of the Hessian matrix (H) and the gradient vector (g) of derivatives of
the log-likelihood function:

θi+1 = θi − H−1
i gi . (6)

The parameter estimates are updated at the end of each iteration. As
noted earlier, the convergence of this method is quite fast when the initial
parameter estimates (θ) are near the ML estimates.

An important problem with likelihood approaches is that they can
have several local optima. That is, both the EM and NR estimation meth-
ods may converge to local optima and not the true (global) maximum
of the likelihood function. To determine whether this has occurred, the
researcher can repeat the procedure by using different start values. If the
results of the repeated estimation nets different parameter estimates and
a higher likelihood (i.e., a lower value for the test statistic G2; see the next
section), then the result with the highest likelihood (the lowest G2 value)
is the MLE.

Figure 1 is a hypothetical illustration of the local optima issue for a
parameter space from the probabilistic parameterization. Because prob-
abilities are bounded by zero and one, no parameter estimate may lie

0 1

Local Optimum

Boundary
Solution

Global
Optimum

Figure 1. Maxima and boundaries.
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“outside” of those values. In Figure 1 we see that there are three maxima –
one at 0, one at about 0.4 and one at about 0.8 – although only one of these
is the global maximum (at about 0.8). Thus, if the start value for the pa-
rameter estimate is too close to the boundary 0, the iterative process will
move this particular parameter estimate to the local maximum (0), but it
will not provide the true (global) maximum estimate. Thus, it is important
to note that a consideration of the start values and the final estimates –
especially if one or more of these estimated parameter values lie on the
boundary of the parameter space – may be of critical importance, and
should be given considerable attention.6

A final cautionary note should be made with respect to model es-
timation. As will be discussed in the next section, the issue of model
identification – whether there is sufficient information in the observed
cross-tabulation to estimate the parameters of the proposed model – is
of crucial importance in latent class analysis. One practical approach to
exploring whether the model is identified is to begin with quite different
start values for the each of the model parameters and estimate the same
model several times. If the final estimates of the model parameters are
quite different for the several analyses but the estimated frequencies and
the chi squares are the same for each of the analyses, it is a sure sign
that the specified model is not identified. A more complete discussion of
model identification issues is presented by Goodman (1974a, 1974b) and
Clogg (1981; see also McCutcheon, 1987).

3. MODEL EVALUATION

Several model evaluation criteria have become more or less standard in
the evaluation of LCMs. All of these criteria are evaluations of how well
the expected cell counts under the model hypothesis replicate the orig-
inally observed cell counts. Four in particular – the Pearson chi square
(X2), the likelihood ratio chi square (L2), the Akaike information cri-
teria (AIC), and the Baysian information criteria (BIC) – have become
widely used and appear throughout this volume. In this section, we briefly
consider the basics of these four criteria.

Each of the four evaluation criteria relies upon a comparison between
the expected cell frequency count ( fi jkl) given by the estimated LCM pa-
rameters and the actual (observed) cell frequency count (Fi jkl) found in
the sample data. LCMs that lead to expected cell frequencies that are too
far from the observed cell frequencies are deemed unacceptable or im-
plausible, whereas models that yield expected cell counts that are similar
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to what has actually been observed are believed to be more plausible or
acceptable. Models with more parameters (e.g., a model with more latent
classes) usually provide a better “fit” with the data; that is, the expected
cell frequencies are typically closer to the observed cell frequencies for
models with more parameters. More parsimonious models tend to have a
somewhat poorer fit. Thus, the usual task is to find the most parsimonious
model – one with the fewest parameters7 – that has an acceptable fit to
the observed data.

As is clear from the two LCM parameterizations expressed in Equa-
tions (1) and (3), however, neither directly yields expected frequency
counts for the cells of the observed contingency table. Instead, each of
the outcomes on the left side of Equations (1) and (2) include the la-
tent variable (X ). By summing over the T classes of the latent variable,
however, we can obtain the LCM’s expected frequency counts for the
observed table. For example, for Equation (1), we see that

π ABCD
ijkl =

∑

t
π X

t π
A|X
it π

B|X
jt π

C|X
kt π

D|X
lt . (7)

By multiplying the expected joint probability of being at level ijkl in the
ABCD contingency table (π ABCD) by the sample size (here, N = 216), we
obtain the expected cell count ( fijkl).

These expected cell count values can be compared with the observed
cell counts (Fijkl) in order to evaluate the model fit. For example, the ex-
pected values can be used with the Pearson chi-square statistic to evaluate
how well the expected cell counts from the specified latent class model
compare to the observed distribution.

X 2 =
∑

ijkl

(Fijkl − fijkl)2

fijkl
. (8)

The degrees of freedom (df) for the chi-square statistic of the unrestricted
LCM are typically calculated as

df = (I J KL− 1) − [T(I + J + K + L+ d) − 1], (9)

where I, J, K, and L represent the number of levels for the respective
indicator variables. In the case of four dichotomies, I = J = K = L =
2, T indicates the number of latent classes in the LCM, and d is the
number of indicator variables minus 1. In the current example, we obtain
15 − [2(5) − 1] = 6 df for the model test. Although Equation (9) works in
nearly all instances, a necessary and sufficient condition for determining
the local identifiability of an LCM involves determining the rank of the
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Hessian matrix of second-order partial derivatives. As mentioned earlier,
more complete discussions of model identification issues are presented
by Goodman (1974a, 1974b) and Clogg (1981; see also McCutcheon,
1987).

The likelihood ratio chi-square test (G2) provides a general-purpose
test for evaluating models and, as Goodman (1968, 1970) and Agresti
(1990) note, is of special importance for comparing alternative models.
This latter point will be of considerable interest as we take up the issues
of hypothesis testing and model restrictions in the following sections.
The likelihood ratio chi-square statistic is a function of the ratio of the
observed to expected cell counts:

G2 = 2
∑

ijkl

Fijkl ln(Fijkl/ fijkl) (10)

As with the Pearson chi-square statistic, the likelihood ratio chi-square
statistic has asymptotic chi-square distributions with respect to the de-
grees of freedom, and thus the probability of acceptance of the alterna-
tive hypothesis – the LCM model – can be determined. Unlike with the
Pearson chi-square statistic, however, when one of two nested models is
true, the difference between the likelihood ratio chi-square statistics for
the two models can expressed explicitly as the conditional likelihood ratio
chi-square statistic with degrees of freedom equal to the difference be-
tween the degrees of freedom for the two models, thus allowing statistical
comparisons of successive models. The conditional likelihood (G2) test
statistic follows a chi-square distribution when the “baseline” (i.e., less re-
stricted) model is acceptable and when the more restricted model is nested
within the less restricted model. This partitioning of the likelihood ratio chi
square has contributed to its widespread adoption in statistical modeling.

Although the Pearson chi-square and the likelihood ratio chi-square
statistics are used throughout this volume and throughout the latent class
analysis literature, alternative model evaluation criteria for LCMs have
been identified in recent years – notably, information criteria. These al-
ternative criteria avoid some limitations of the traditional X 2. First, the
chi-square statistics tend to be conservative when sample sizes are large;
that is, it is difficult to reject the significance of even quite modest pa-
rameters when the sample size is large. Second, LCMs can require the
estimation of a rather large number of parameters even for models of
modest size.

Information criteria approaches penalize the likelihood for the in-
creased number of parameters required to estimate more complex
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(i.e., less parsimonious) models. Because more parameters (i.e., more
complex models) yield a greater likelihood, each of the information cri-
teria penalizes the likelihood by reducing it by a function of the increased
number of estimated parameters. The two most widely used of the infor-
mation evaluation criteria are the AIC (Akaike, 1974) and the BIC (see
Rafftery, 1995):

AIC = G2 − 2df

BIC = G2 − df ∗ [ln(N)],

where df is the number of degrees of freedom and N is the sample size.
Thus, we see that the AIC penalizes the G2 by the total number of param-
eters required for model estimation (by subtracting two times the number
of degrees of freedom), and the BIC penalizes the G2 by both the total
number of parameters required for model fit and the total sample size
(by subtracting the natural log of the sample N times the number of de-
grees of freedom). Consequently, models with lower AICs and BICs are
preferred to those with higher values for these criteria.

In Table 4, these four evaluation criteria are presented for the LCM
in the current example. As these data indicate, the independence model –
that is, the model in which the four indicator variables are independent of
one another – is clearly an unacceptable hypothesis; all of the evaluation
criteria are unequivocal with respect to this conclusion. The unrestricted
two-class LCM – that is, the model in which these four indicator vari-
ables are independent of one another within the two classes of the latent
variable – is clearly an acceptable solution; all of the evaluation criteria
support this conclusion.

As nearly all of the advances to the basic LCM presented in this vol-
ume demonstrate, there are a wide range of interesting variations on the
basic LCM that make this modeling approach a powerful tool for data
analysis and research. Among the many modifications are restrictions on
the parameters of the LCM. In the next section, we examine some of the
basics of these restrictions.

Table 4. LCM Evaluation Criteria for Ego’s Dilemma Data

Model X2 G2 AIC BIC df

Independence 104.11 81.08 59.08 21.96 11
Two-Class LCM 2.72 2.72 −9.28 −29.53 6
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4. RESTRICTED LATENT CLASS MODELS

A variety of hypotheses may be tested by restricting the parameters of
the LCM. Because the two parameterizations are essentially equivalent,
a number of parameter restrictions are equivalent across the two param-
eterizations. However, there are also several somewhat substantively dif-
ferent parameter restrictions in the loglinear parameterization compared
with the probabilistic parameterization. Thus, we will examine the two
parameterizations separately, beginning with the probabilistic parame-
terization.

There are two basic types of restrictions that we can impose on the
parameters of the probabilistic parameterization of the LCM: determin-
istic and equality restrictions. When these restrictions are applied to the
conditional probabilities across classes and across indicators, as well as
to the latent class probabilities across classes, these two general types
of restrictions yield a number of different hypotheses we might wish to
test. Moreover, as we will note later, imposing restrictions on parameters
“frees up” additional model parameters, which may allow us to fit LCMs
with more latent classes than are permitted according to Equation (9).
We must proceed with caution when imposing model restrictions because
by imposing certain restrictions we may actually turn an identified model
into an unidentified model.

Consider the use of equality restrictions in the case of Ego’s dilemma
presented earlier. We may wish to test the parallel indicators hypothesis
(Goodman, 1974a, 1974b; Hagenaars, 1990), in which we hypothesize that
two or more of the indicator variables have identical error rates with re-
spect to each of the latent classes. As with all of the parameter restrictions,
we should suggest our hypotheses prior to reviewing the outcome of prior
model estimation because post-hoc hypothesizing capitalizes on chance
findings. For purposes of illustration, however, let us assume that we had
earlier hypothesized that indicators Band C (Drama Critic Friend and In-
surance Doctor Friend) were parallel indicators – that is, that these two in-
dicators have identical error rates with respect to the two latent classes. We
can formally test this hypothesis by imposing the following restrictions:

π
B|X
11 = π

C|X
11 , π

B|X
12 = π

C|X
12 . (11)

By imposing these two restrictions, we reduce by two the number of pa-
rameters that must be estimated for the model. Thus, this model will yield
two additional degrees of freedom relative to the unrestricted two-class
model. The evaluation criteria for the estimated LCM with the parallel
indicators restriction are reported in Table 5.
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Table 5. LCM Evaluation Criteria for Ego’s Dilemma Data

Model X2 G2 AIC BIC df

H1: two-class LCM 2.72 2.72 −9.28 −29.53 6
H2: H1 + B & C parallel indicators 2.84 2.89 −13.11 −40.12 8
H3: H2 + D equal error rate 3.60 3.65 −14.35 −44.73 9
H4: H3 + Aas perfect indicator for class 2 3.61 3.66 −16.34 −50.09 10

The data in Table 5 indicate that we can accept the hypothesis that
indicator variables B and C are parallel indicators (H2); that is, that latent
Class 1– and latent Class 2–type of respondents are equally likely to err
in their responses with respect to the Drama Critic Friend and Insurance
Doctor Friend indicators in their respective classes. Both the Pearson
(2.84) and the likelihood ratio (2.89) chi squares (with 8 df) indicate that
H2 is a plausible model. Moreover, because H2 is nested within H1, we can
use the conditional likelihood ratio X-square test to examine whether the
newly imposed restrictions are acceptable, or whether they result in an un-
acceptable erosion of fit to the observed data. In the current instance, the
conditional difference between the two model G2s (2.89 − 2.72 = 0.17,
with 8 − 6 = 2 df) clearly indicates that the newly hypothesized model
(H2) produces only a very modest erosion of fit and is, consequently, pre-
ferred to the less parsimonious, unrestricted model represented by H1. In
addition to these X-square tests, the greater negative values for both the
AIC and BIC indicate that model H2 is preferred to H1. Thus, we accept
H2 as our new “baseline” model.

Another equality model restriction that we might wish to examine
with the probabilistic parameterization of the LCM is the equal error
rate hypothesis (Goodman, 1974a, 1974b; Hagenaars, 1990). The equal
error rate hypothesis suggests that we can impose equality constraints on
the conditional probabilities to test whether an indicator variable has the
same error rate across the two classes. For example, we might wish to test
that indicator variable D (Board of Directors Friend) has an equal error
rate for Classes 1 and 2.8 This hypothesis can be formally stated as

π
D|X
21 = π

D|X
12 . (12)

This hypothesis indicates that the likelihood of a particularistic-type (Class
1) respondent giving a universalistic (l = 2) response is equal to a
universalistic-type (Class 2) respondent giving a particularistic (l = 1)
response.

Once again, the data in Table 5 support the acceptance of this hy-
pothesis. All of the evaluation criteria for H3 indicate acceptance. With
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9 df for this model, both the Pearson (3.60) and likelihood ratio chi squares
(3.65) indicate acceptance. Also, the conditional G2 (0.76, 1 df) indicates
that the additional restriction is acceptable. Finally, the two information
criteria values (−14.35 and −44.73) also indicate that H3 is preferred
over H2. Thus, we accept the hypothesis that indicator D has equal error
rates for Classes 1 and 2.

A second type of hypothesis that we can consider with respect to the
LCM’s conditional probabilities is that of a deterministic model restriction.
A deterministic restriction on a conditional probability tests the hypoth-
esis that the conditional probability equals a specific value – usually, this
value is either 1.0 or 0. For example, we might wish to test the hypoth-
esis that indicator A (Passenger Friend) is a perfect indicator of Class 2;
that universalistic-type (Class 2) respondents will have a zero probability
of giving a particularistic response to question A. This restriction can be
formally stated as

π
A|X
12 = 0. (13)

Because the model with this restriction requires the estimation of one
fewer parameter, the model will have an additional degree of freedom.

As the data in Table 5 indicate, model H4 provides an acceptable fit
to the data. The Pearson (3.61) and likelihood ratio (3.66) chi squares
(10 df) are clearly acceptable. Also, the conditional G2 (0.01 with 1 df)
clearly indicates acceptance of this model. The AIC (−16.34) and the
BIC (−50.09) indicate that this model is a preferable model to all of those
presented in Table 5. The parameter estimates for the probabilistic LCMs
of H4 are presented in Table 6.

The parameter estimates in Table 6 reflect the three types of model
restrictions on the conditional probabilities. We see, for example, that for
Class 1 and Class 2 the conditional probabilities are identical for indicator

Table 6. Latent Class and Conditional Probabilities for
the Restricted Ego’s Dilemma LCM

Indicator Class 1 Class 2

A. Passenger Friend 0.275 0.000b

B. Drama Critic Friend 0.636a 0.046a

C. Insurance Doctor Friend 0.636a 0.046a

D. Board of Directors Friend 0.852a 0.148a

Latent Class Probabilities 0.7574 0.2426

a Equality restriction.
b Deterministic restriction.
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variables B and C; thus, we can conclude that these two are parallel in-
dicators for our model. Also, we see that indicator D has equal error
rates for both classes; the probability of giving a level 2 response to D
among Class 1 respondents is (1.0 − 0.852) = 0.148, which is identical to
the probability of giving a level 1 response among Class 2 respondents.
Finally, we see that Class 2–type respondents have a zero probability of
responding that they have a right to expect their friend to falsely report
that the respondent was driving within the speed limit.

A third type of restriction that may be of interest to researchers is
the inequality restriction on conditional probabilities (see Croon, this vol-
ume). For example, inequality restrictions could be useful when a three-
class solution is found and the researcher wishes to test whether the three
classes lie on a continuum, with one of the classes being intermediate to
the other two “end” classes. If this were the case using the current data,
for example, we may wish to test the hypothesis that

π
A|X
11 ≥ π

A|X
12 ≥ π

A|X
13 , (14)

which indicates that Class 1 respondents are the most likely to respond
at level 1 of A; Class 2 respondents are more likely than Class 3 but less
likely than Class 1 to respond at level 1 of A; and Class 3 are the least likely
to respond at level 1 of A. As Croon notes, however, there are problems
associated with the determination of the degrees of freedom for these
model tests.

In principle, each of these types of probabilistic parameter restric-
tions – equality, deterministic and inequality – may also be imposed on the
latent class probabilities. In practice, however, deterministic restrictions
are rarely used; unless there exists some a priori hypothesis regarding the
exact size of a class, there would be no practical use for a deterministic
restriction on a latent class probability. In our current example, an equal-
ity restriction on the two latent class probabilities – although possible –
appears implausible.

A. Restricted Loglinear Models

A brief consideration of Equation (5) indicates that we can replicate in the
loglinear parameterization each of the equality restrictions we imposed
on the conditional probabilities of the LCM. For example, the parallel
indicator restriction imposed on the conditional probabilities of indicators
B and C can be replicated by imposing the restrictions

λB
1 = λC

1 , λBX
11 = λCX

11 . (15)



74 Allan L. McCutcheon

The equal error rate hypothesis imposed on the conditional probabilities
of indicator D can be replicated by imposing the restriction

λD
1 = 0. (16)

By imposing these three restrictions on the loglinear parameterization,
we obtain the model specified as H3 in Table 5.

Imposing the deterministic restriction that the Class 2 conditional
probabilities of indicator item Aequals 0 and 1, however, is problematic
in the loglinear parameterization. For Equation (5) to yield a conditional
probability of 0 requires that the numerator on the right side of the equa-
tion also equal 0. This, of course, means that the sum of the two lambdas
in the numerator would have to equal negative infinity. Thus, to test this
particular deterministic restriction the loglinear parameterization, our
hypothesis must include one or more structural zeros.

In contrast to the probabilistic parameterization, the loglinear pa-
rameterization tends to focus attention on the association between the
indicator variables and the latent variable. For example, with the loglin-
ear restriction, we can impose an equal association restriction to test the
hypothesis that two or more indicator items have an identical pattern of
association with the latent variable. When either the indicator items or the
latent variable has more than two levels, the loglinear parameterization
permits linear restrictions on the two-variable association parameters.

As Clogg noted (1988, 1995; see also McCutcheon, 1996; Heinen,
1996), the linear restrictions that were first applied to the usual loglinear
models in which all variables are observed (Haberman, 1974; Goodman,
1979; Clogg and Shihadeh, 1994) can also be applied to the loglinear pa-
rameterization of the LCM. For an example of this approach, we consider
a set of four dichotomous items about the approval of social reasons for
abortion taken from the 1982 General Social Survey (Davis and Smith,
1982). In this survey, a sample of American respondents were asked about
their approval of legal abortions for a woman if she is single and does not
wish to marry the man (A), if the woman is married and too poor to have
any more children (B), if the woman wants an abortion for any reason (C),
and if the woman is married and does not want any more children (D).
The observed cell counts for the responses to these items are reported in
Table 7.

We begin by fitting an unrestricted two-class latent model to these
data, as this is the simplest and most parsimonious model. As the model
evaluation criteria reported in Table 8 indicate, however, the unrestricted
two-class LCM does not provide an acceptable fit to the observed data.
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Table 7. Responses to Four Social Reasons for Abortion
Items (1982 General Social Survey)

Items Approval of Legal Abortion

A B C Item D(+) Item D(−)

+ + + 567 11
+ + − 62 32
+ − + 17 10
+ − − 22 38
− + + 18 13
− + − 42 62
− − + 9 11
− − − 28 719

Thus, we must reject this model as implausible. The next model we might
wish to test is the unrestricted three-class model. As Goodman (1974a)
notes, however, this model is not identified, even though Equation (9) in-
dicates that this model would be identified with a single degree of freedom
for the model test.

An alternative to the unrestricted three-class model is a three-class
model in which the three-classes are linearly ordered from more approv-
ing to less approving. We can estimate this model by modifying Equa-
tion (3) to include a set of linear restrictions on the two-variable indicator-
by-latent variable parameters:

ln
(

f ABCDX
ijklt

)

= λ + λX
t + λA

i + λB
j + λC

k + λD
l + gtλ

AX
i∗

+ gtλ
BX
j∗ + gtλ

CX
k∗ + gtλ

DX
l∗ . (17)

The single variable parameters of this loglinear parameterization are sub-
ject to the restrictions expressed in Equation (4). The two-variable param-
eters in Equation (16) are now restricted only with respect to summation

Table 8. LCM Evaluation Criteria for Abortion Approval Data

Model X 2 G2 AIC BIC df

H1: two-class LCM 216.45 182.13 170.13 137.64 6
H2: three-class model with linear 2.76 2.75 −7.25 −34.32 5

restrictions
H3: H2 + A, B, C restricted to equal 4.52 4.57 −9.43 −47.32 7

association
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over the levels of the indicator variable

∑

i

gtλ
AX
i∗ =

∑

j

gtλ
BX
j∗ =

∑

k

gtλ
CX
k∗ =

∑

l

gtλ
DX
l∗ = 0, (18)

because there is only a single estimate of each two-variable lambda for
all T levels of the latent variable. The linear coefficient, gt , takes on the
values −1, 0, and 1 for the three levels of the latent variable.9

As the evaluation criteria in Table 8 indicate, the three-class linearly
restricted model provides a good fit to the observed data. Both the Pear-
son (2.76) and likelihood ratio (2.75) chi squares (5 df) indicate a good fit
to the data, as do the AIC (−7.25) and the BIC (−34.32). Because H1 is a
two-class model and H2 is a three-class model, these are not nested; thus,
no conditional G2 test can be made. Given the four evaluation criteria
listed in Table 8, we can conclude that the loglinear parameters for the
four indicator variables can be linearly restricted across the three classes
of the latent variable.

Although we have linearly restricted the dichotomously scored vari-
ables in the abortion attitudes example across the three classes of the
latent variable, it is important to note that linear restrictions may also
be imposed on the indicator variables when they have three or more or-
dered categories. Also, linear-by-linear restrictions can be imposed when
both the indicator and latent variables have three or more ordered levels.
McCutcheon (1996) has also shown that such restrictions are also possible
on parameters related to a grouping variable when it has three or more
ordered levels.

Our final hypothesis for these data tests the equality of linear associ-
ation across the three indicator variables A, B, and C. As the evaluation
criteria in Table 8 indicate, this hypothesis (H3) is clearly acceptable, with
a X2 test statistic of 4.52 and a G2 test statistic of 4.57 (7 df). Because H3

is nested in H2, we can use the conditional G2 to evaluate the improve-
ment of fit (1.82, 2 df) and find that, like the AIC (−9.43) and the BIC
(−47.32), the conditional G2 recommends acceptance of the equal linear
association hypothesis for indicator variables A, B, and C.

As the parameters in Table 9 indicate, the indicator variables are very
highly related to the three levels of the latent abortion attitudes variable
in this 1982 sample of American adults. Moreover, the fourth indicator
variable – whether married women who want to have no more children
should be able to obtain a legal abortion – appears to be the indicator
most highly related to the unobserved latent classes.
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Table 9. Linearly Restricted Loglinear Parameters for Abortion
Attitudes LCM (H3)

Parameter

Indicator Single Variable Two Variables

A. Single woman −0.095 4.151a

B. Poor married woman 0.124 4.151a

C. Any reason −0.629 4.151a

D. Wants no more children −0.084 6.917
X. Latent class variable

(t = 1) 0.141 —
(t = 2) −0.441 —

a Equality restrictions imposed.

5. MULTI-SAMPLE LATENT CLASS MODELS

Often researchers are confronted with a set of responses to identical indi-
cator items in sample data from two or more populations. These samples
may be from different social, cultural, or economic groups (McCutcheon,
1987); different regions, states, or nations (see, e.g., McCutcheon and
Nawojczk, 1995; McCutcheon and Hagenaars, 1997); or the samples
may be from the same group at two or more points in time (see, e.g.,
McCutcheon, 1986, 1996). Indeed, the samples may be from any mutually
exclusive groups. When we are in such a situation, we can use a multi-
sample, or simultaneous, LCM (SLCM) to compare the latent structures
in the samples (Clogg and Goodman, 1984, 1985, 1986).

We begin our consideration of the multisample LCM by noting that
our original parameterizations, shown in Equations (1) and (3), must be
modified to reflect the addition of a grouping variable that reflects the
populations from which we have samples. We designate that variable as
G with S samples. Thus, if we have samples from four nations (i.e., S = 4),
for example, we would have G1, G2, G3, and G4. The formal multisample
probabilistic parameterization of the LCM can be expressed as

π ABCDXG
ijklts = πG

s π
X|G
ts π

A|XG
its π

B|XG
jts π

C|XG
kts π

D|XG
lts . (19)

We must also note that an inclusion of a grouping variable in this param-
eterization results in changes in the model restrictions:

∑

t
π
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i

π
A|XG
its =

∑

j

π
B|XG
jts =

∑

k

π
C|XG
kts

=
∑

l

π
D|XG
lts = 1.0. (20)
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We must also add similar modifications to the loglinear parameterizations
of Equations (3):

ln
(

f ABCDXG
ijklts

)

= λ + λG
s + λX

t + λA
i + λB

j + λC
k + λD

l + λAX
it

+ λBX
jt + λCX

kt + λDX
lt + λXG

ts + λAG
is + λBG

js

+ λCG
ks + λDG

ls + λAXG
its + λBXG

jts + λCXG
kts + λDXG

lts .

(21)

Similarly, we must modify the model restrictions for Equation (21). In
addition to the restrictions noted in Equation (4), we must add
∑
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As with the single-sample LCM, the two parameterizations of the SLCM
are equivalent. Thus, for convenience, we will adopt the usage of re-
ferring to the specific SLCM by the marginals that correspond to the
highest-order interaction terms because in hierarchical loglinear models
these terms represent the minimal sufficient statistics (Goodman, 1978;
Agresti, 1990; Hagenaars, 1990). Because of the axiom of local indepen-
dence, the SLCM is one of the few instances when we hypothesize a model
with three-variable interactions. Consequently, we can refer to the model
specified in Equations (19) and (21) as the {AXG, BXG, CXG, DXG}
SLCM.

Typically, the researcher’s first interest in SLCM is to establish struc-
tural equivalence – that is, to establish that the indicator variables are
independent of the grouping variable. This means that the preferred in-
stance is one in which the model specified in Equations (19) and (21)
can be reduced to {XG, AX, BX, CX, DX}. In this instance, we can repre-
sent the latent variable as structurally homogeneous in the two or more
samples, meaning that the associations between the latent variable and
each of the indicator variables are identical across all of the samples. In
this instance, we are confident that we are measuring the identical latent
variable in each of the samples.
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The less our data conform to this structural equivalence ideal, the less
our certainty that we have truly measured the identical phenomenon in
each of the samples. Divergences from complete structural equivalence
in the several samples must be evaluated by the researcher. In some in-
stances, divergences may be readily explained by factors such as differing
historical, political, cultural, social, and economic circumstances (see, e.g.,
McCutcheon and Nawojczk, 1995).

Consider the data presented in Table 1. You will recall that in this
example, students were asked about four scenarios involving role con-
flict. One group of 216 students was asked about the situations in which
they personally were confronted with the dilemmas, and another group
of 216 was asked about the situations in which their close friend was
confronted by the dilemmas. Recall that a two-class model fit the Ego’s
Dilemma data well. Thus, the first model we consider is the two-class
model for each of these two samples. The evaluation criteria presented in
Table 10 suggest that the unrestricted two-class model (H1) fits the data
well.

As we see from these evaluation criteria, the two-class per sample
model appears to provide an acceptable characterization of these two
samples of students. Both the X2 (9.06) and the G2 (8.25) with 12 df support
this conclusion. Moreover, both of the information criteria statistics also
support the characterization of the two samples as each having two classes
(H1).

The next hypothesis we test (H2) is the two-class structural equiva-
lence model. This model tests the hypothesis that the two latent classes
for the Ego’s Dilemma sample are the same two classes as in the Friend’s
Dilemma sample. As the evaluation criteria indicate, this too is an ac-
ceptable hypothesis: the X2 (24.78) and L2 (23.47) on 20 df support this
conclusion. Because H2 is nested within H1, we can also examine the con-
ditional G2 test (15.22 with 8 df), which also supports the structural equiv-
alence hypothesis at the 0.05 alpha level (p = .0550). Finally, both of the
information criteria statistics – the AIC (−16.53) and the BIC (−97.90) –
indicate a preference for H2 over H1.

Table 10. Simultaneous LCM Evaluation Criteria for Ego’s Dilemma and
Friend’s Dilemma Data: Two-Latent-Class Solution (T = 2)

Model X2 G2 AIC BIC df

H1: {AXG, BXG, CXG, DXG} 9.06 8.25 −15.75 −64.57 12
H2: {XG, AX, BX, CX, DX} 24.78 23.47 −16.53 −97.90 20
H3: {G, AX, BX, CX, DX} 24.82 23.48 −18.52 −103.96 21



80 Allan L. McCutcheon

The final hypothesis we might wish to examine is the complete homo-
geneity hypothesis (see H3). The complete homogeneity hypothesis tests
whether the latent structure is identical in both (all) samples and that
the distribution of the latent variable is identical in both (all) samples.
Because these two samples were both from the same population and the
questionnaires with Ego’s and Friend’s Dilemmas were randomly as-
signed, in this particular instance the complete homogeneity hypothesis
allows us to assess whether problem framing (Ego vs. Friend) appears
to have a significant influence on the outcome of the observed response
patterns (beyond what might occur by chance variation).

As the data in the last row of Table 10 indicate, the complete ho-
mogeneity hypothesis is clearly preferred to the other two hypotheses.
Both of the chi-square statistics support this conclusion – the X2 (24.82)
and L2 (23.48) on 21 df. Because H3 is nested within H2, we can exam-
ine the conditional G2 test (0.01 with 1 df), which indicates virtually no
increase in the likelihood ratio chi square from imposing this constraint.
Finally, the two information criteria statistics – the AIC (−18.52) and the
BIC (−103.96) – clearly indicate a preference for H3 over H2. Thus, we
might conclude from these data that the manner in which one frames
these scenarios – whether as Ego’s Dilemma or as Friend’s Dilemma –
has no consequences for the pattern of responses; at least, not among the
population of Harvard and Radcliffe social science students of 1950.

As the conditional probabilities and latent class probabilities reported
in Table 11 indicate, there are no differences between the models for the
two question framings. In every instance, the conditional probabilities for
group 1 (Ego’s Dilemma) equals the conditional probabilities for group
2 (Friend’s Dilemma). Moreover, the distribution of the two classes of
respondents is also identical.

Table 11. Latent Class and Conditional Probabilities for the SLCM for
Ego’s and Friend’s Dilemmas: Complete Homogeneity (H3)

Ego’s Dilemma Friend’s Dilemma

Indicator Class 1 Class 2 Class 1 Class 2

A. Passenger Friend 0.354 0.010 0.354 0.010
B. Drama Critic Friend 0.567 0.108 0.567 0.108
C. Insurance Doctor Friend 0.717 0.021 0.717 0.021
D. Board of Directors Friend 0.849 0.319 0.849 0.319

Latent Class Probabilities 0.7083 0.2917 0.7083 0.2917
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Table 12. Loglinear Parameters for the SLCM for Ego’s and Friend’s
Dilemmas: Complete Homogeneity (H3)

Two-Var. Two-Var. Three-Var.
Single-Var. Parameters Parameters Parameters

Indicator Parameters (With X) (With G) (With XG)

A. Passenger Friend −1.296 0.976 0.000 0.000
B. Drama Critic Friend −0.461 0.596 0.000 0.000
C. Insurance Doctor Friend −0.731 1.195 0.000 0.000
D. Board of Directors Friend 0.242 0.622 0.000 0.000
X. Latent Class Variable 0.443 — 0.000 —
G. Grouping Variable 0.000 0.000 — —

Finally, as the loglinear coefficients in Table 12 clearly indicate, the
complete homogeneity hypothesis involves restricting to zero all param-
eters that include the grouping variable (G). As a consequence, the two
rightmost columns of Table 12 are all zero, as are all of the entries in the
final row of Table 12. Only those loglinear coefficients that exclude the
grouping variable are significantly different from zero.

Before this section is completed, it is important to note that all of the
restrictions that are possible with the single-sample model are also pos-
sible in the multisample instance (McCutcheon and Hagenaars, 1997).
Equality and deterministic restrictions may be used in both instances, as
can linear restrictions on the loglinear parameters (McCutcheon, 1996).
As with the single-sample instance, however, one must be cautious about
imposing the restrictions, as these may influence the identification of the
model. Moreover, the usual variant of the EM algorithm for the estima-
tion of LCMs does not always work properly when models are restricted
(Mooijaart and Van der Heijden, 1992).10

6. CONCLUSION

In this brief overview of the LCM, it has been possible to illustrate only
a few of the reasons for its growing popularity as a research tool. A num-
ber of popular software programs are making LCMs easily accessible to
social and behavioral researchers worldwide. Clearly, the two parameter-
izations make this approach a highly flexible and attractive method for
the analysis of categorical data. The ability to impose a variety of restric-
tions on these parameterizations and the range of hypotheses that can be
explicitly tested have also played an important part. Also, the extension
of the LCM to the multisample instance has played an important role
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in its application in comparative research. As the remaining chapters of
this volume clearly illustrate, the extensions of this powerful model con-
tinue to push it to the forefront in new areas of the analysis of categorical
data.
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NOTES

1. In some instances, it is plausible that the observed associations reflect cause–
effect relationships. In such instances, latent class analysis is inappropriate.
As Goodman (1974a) and Hagenaars (1990, this volume) show, however,
the LCM can be integrated into models that have such causal associations.

2. The LCM is part of the larger family of mixture models (see, e.g., McLaughlin
and Peel, 2000; Lindsay, 1995; McLachlan and Basford, 1988; Titterington
et al., 1985; Everitt and Hand, 1981). Within the area of mixture models, the
latent class probability is often referred to as the mixing proportion.

3. We must be cautious in drawing the analogy between latent class probabilities
and factor loadings because, unlike factor loadings, the interpretation of
conditional probabilities depends on their size relative to those in other
latent classes. For example, if Class 1 has a conditional probability of .70 of
getting a right answer for item A, .70 is high if for Class 2 the conditional
probability of getting it right is .25, but it is low if the conditional probability
in Class 2 is .99.

4. It is important to note that an absolute 0.000 or 1.000 estimate of a con-
ditional probability for an indicator is referred to as a boundary estimate
because probabilities are bounded by 0.00 and 1.00. Boundary estimates
are problematic within latent class analysis. During the iterative process for
finding the parameter estimates, if one or more of the estimates goes to a
boundary (i.e., either 0 or 1), all of the other parameters are maximum-
likelihood solutions only if the parameters estimated to be at the boundary
of the parameter space are truly zero or one in the population. Fortunately,
most of the available software programs permit the researcher to specify
multiple start values for the iterative process; it is highly recommended that
this option be used in any instance in which a boundary value is estimated
for an LCM.

5. An alternative approach is for the iterations to end after some prespecified
number have been completed. This criterion is risky, however, as substantial
changes in the parameter estimates may still occur after a very large number
of iterations.

6. An additional concern regarding boundary values has to do with the deter-
mination of the degrees of freedom. When the boundary value is established
as an a priori hypothesis (i.e., as a deterministic restriction), no parameter is
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estimated. When the boundary value is the result of the estimation procedure,
however, there is some concern about the number of degrees of freedom to
associate with the model.

7. An alternative view of parsimony is to define the simplest model in terms of
the logic of the model instead of the number of model parameters. Within
the context of LCMs, for example, this approach is used to examine the
scalability of a set of indicator variables (see, e.g., Clogg and Sawyer, 1981;
Clogg and Goodman, 1986).

8. Once again, we must note that this approach to post-hoc hypothesis testing
is for illustrative purposes only.

9. In general, if j = 1, . . . , J , then each of the linear coefficients has the values
that are computed as j − (J + 1)/2.

10. The LEM program (Vermunt, 1997) was used to estimate all of the models
presented in this chapter. LEM corrects for the errors common to problems
discussed by Mooijaart and van der Heijden (1992).


